Giải bài tập Bài 7.24 trang 59 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 7.24 trang 59 Toán 11 Tập 2. Bài 26: Khoảng cách. Toán 11 - Kết nối tri thức
Đề bài:
Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:
a) MN là đường vuông góc chung của AB và CD.
b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.
Đáp án và cách giải chi tiết:
a) Xét tam giác ADB có AD = BD = a nên tam giác ADB cân tại D.
Vì M là trung điểm của AB nên DM là trung tuyến.
Vì tam giác ADB cân tại D, DM là trung tuyến nên DM đồng thời là đường cao hay DM AB.
Xét tam giác ABC có AC = BC = a nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM AB.
Vì DM AB và CM AB nên AB (DCM), suy ra AB MN.
Xét tam giác ADC có AD = AC = a nên tam giác ACD cân tại A mà AN là trung tuyến nên AN đồng thời là đường cao hay AN CD.
Xét tam giác BCD có BD = BC = a nên tam giác BCD cân tại B mà BN là trung tuyến nên BN đồng thời là đường cao hay BN CD.
Vì AN CD và BN CD nên CD (ABN), suy ra CD MN.
Vì AB MN và CD MN nên MN là đường vuông góc chung của AB và CD.
b) Vì AB (DCM) nên AB CD.
Gọi E là trung điểm của BC.
Xét tam giác ABC có AB = AC = a nên tam giác ABC cân tại A mà AE là trung tuyến nên AE đồng thời là đường cao hay AE BC.
Xét tam giác BDC có BD = CD = a nên tam giác BCD cân tại D mà DE là trung tuyến nên DE đồng thời là đường cao hay DE BC.
Có AE BC và DE BC nên BC (ADE), suy ra BC AD.
Gọi F là trung điểm của BD.
Xét tam giác ADB có AB = AD = a nên tam giác ADB cân tại A mà AF là trung tuyến nên AF đồng thời là đường cao hay AF BD.
Xét tam giác BCD có BC = CD = a nên tam giác BCD cân tại C mà CF là trung tuyến nên CF đồng thời là đường cao hay CF BD.
Vì AF BD và CF BD nên BD (ACF), suy ra BD AC.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 7.22 trang 59 Toán 11 Tập 2
Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a, mặt bên SAD là một tam giác đều và (SAD) (ABCD).
a) Tính chiều cao của hình chóp.
b) Tính khoảng cách giữa BC và (SAD).
c) Xác định đường vuông góc chung và tính khoảng cách giữa AB và SD.
Bài 7.23 trang 59 Toán 11 Tập 2
Cho hình hộp chữ nhật ABCD.A'B'C'D'có AA' = a, AB = b, BC = c.
a) Tính khoảng cách giữa CC' và (BB'D'D).
b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.
Bài 7.25 trang 59 Toán 11 Tập 2
Cho hình lập phương ABCD.A'B'C'D'có cạnh a.
a) Chứng minh rằng hai mặt phẳng (D'AC)và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.
b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).
Bài 7.26 trang 59 Toán 11 Tập 2
Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đõ, biết các chân của giá đỡ dài 129 cm.
Bài 7.27 trang 59 Toán 11 Tập 2
Một bể nước có đáy thuộc mặt phẳng nằm ngang. Trong trường hợp này, độ sâu của bể là khoảng cách giữa mặt nước và đáy bể. Giải thích vì sao để đo độ sâu của bể, ta có thể thả quả dọi chạm đáy bể và đo chiều dài của đoạn dây dọi nằm trong bể nước.
HĐ1 trang 54 Toán 11 Tập 2
a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK ≥ MH (H.7.74).
b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M lên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK MH (H7.75).
Luyện tập 1 trang 55 Toán 11 Tập 2
Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).
a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').
b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.
HĐ2 trang 55 Toán 11 Tập 2
Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78).
Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P).
HĐ3 trang 56 Toán 11 Tập 2
a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không?
b) Cho hai mặt phẳng song song (P) và (Q) và một điểm M thay đổi trên (P) (H.7.79). Hỏi khoảng cách từ M đến (Q) thay đổi thế nào khi M thay đổi.
Câu hỏi trang 56 Toán 11 Tập 2
Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P), (Q)) có mối quan hệ gì?
Luyện tập 2 trang 56 Toán 11 Tập 2
Cho hình chóp S.ABC có SA (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.
a) Tính d((MNP), (ABC)) và d(NP, (ABC)).
b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A, (SBC)).
Vận dụng 1 trang 57 Toán 11 Tập 2
Ở một con dốc lên cầu, người ta đặt một khung khống chế chiều cao, hai cột của khung có phương thẳng đứng và có chiều dài bằng 2,28 m. Đường thẳng nối hai chân cột vuông góc với hai đường mép dốc. Thanh ngang được đặt trên đỉnh hai cột. Biết dốc nghiêng 15° so phương nằm ngang. Tính khoảng cách giữa thanh ngang của khung và mặt đường (theo đơn vị mét và làm tròn kết quả đến chữ số thập phân thứ hai). Hỏi cầu này có cho phép xe cao 2,21 m đi qua hay không?
HĐ4 trang 57 Toán 11 Tập 2
Cho hai đường thẳng chéo nhau a và b. Gọi (Q) là mặt phẳng chứa đường thẳng b và song song với a. Hình chiếu a' của a trên (Q) cắt b tại N. Gọi M là hình chiếu của N trên a (H.7.83).
a) Mặt phẳng chứa a và a' có vuông góc với (Q) hay không?
b) Đường thẳng MN có vuông góc với cả hai đường thẳng a và b hay không?
c) Nêu mối quan hệ của khoảng cách giữa a, (Q) và độ dài đoạn thẳng MN.
Khám phá trang 58 Toán 11 Tập 2
Cho đường thẳng a vuông góc với mặt phẳng (P) và cắt (P) tại O. Cho đường thẳng b thuộc mặt phẳng (P). Hãy tìm mối quan hệ giữa khoảng cách giữa a, b và khoảng cách từ O đến b (H.7.88).
Luyện tập 3 trang 58 Toán 11 Tập 2
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA (ABCD), SA = .
a) Tính khoảng cách từ A đến SC.
b) Chứng minh rằng BD (SAC).
c) Xác định đường vuông góc chung và tính khoảng cách giữa BD và SC.
Thảo luận trang 58 Toán 11 Tập 2
Khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia. Hãy thảo luận để làm rõ nhận xét này.