Giải bài tập Bài 6.36 trang 26 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 6.36 trang 26 Toán 11 Tập 2. Bài tập cuối chương 6. Toán 11 - Kết nối tri thức

Đề bài:

Giải các phương trình sau:

a) 31 – 2x = 4x;

b) log3(x + 1) + log3(x + 4) = 2.

Đáp án và cách giải chi tiết:

a) 31 – 2x = 4x

Lấy lôgarit cơ số 3 hai vế của phương trình ta được

log331 – 2x = log34x

⇔ 1 – 2x = x log34

⇔ (2 + log34)x = 1

Vậy phương trình đã cho có nghiệm duy nhất là 

b) log3(x + 1) + log3(x + 4) = 2

Bài 6.36 trang 26 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Ta có log3(x + 1) + log3(x + 4) = 2

⇔ log3[(x + 1)(x + 4)] = 2

⇔ (x + 1)(x + 4) = 32

⇔ x2 + 5x + 4 = 9

⇔ x2 + 5x – 5 = 0

⇔ 

Loại nghiệm 𝑥=5352<1.

Vậy phương trình đã cho có nghiệm duy nhất là 

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 6.27 trang 25 Toán 11 Tập 2

Cho hai số thực dương x, y và hai số thực α, β tùy ý. Khẳng định nào sau đây là sai?

A. xα ∙ xβ = xα + β.

B. xα ∙ yβ = (xy)α + β.

C. (xα)β = xα ∙ β.

D. (xy)α = xα ∙ yα.

Bài 6.28 trang 25 Toán 11 Tập 2

Rút gọn biểu thức 𝑥𝑥𝑥:𝑥58𝑥>0 ta được

A. x4

B. x

C. x3

D. x5

Bài 6.29 trang 25 Toán 11 Tập 2

Cho hai số thực dương a, b với a ≠ 1. Khẳng định nào sau đây là đúng?

A. loga(a3b2) = 3 + logab.

B. loga(a3b2) = 3 + 2logab.

C. loga(a3b2) = logab.

D. loga(a3b2) = 13+12log𝑎𝑏.

Bài 6.30 trang 25 Toán 11 Tập 2

Cho bốn số thực dương a, b, x, y với a, b ≠ 1. Khẳng định nào sau đây là sai?

A. loga(xy) = logax + logay.

B. log𝑎𝑥𝑦=log𝑎𝑥log𝑎𝑦.

C. loga1x=1logax.

D. logab ∙ logbx = logax.

Bài 6.31 trang 25 Toán 11 Tập 2

Đặt log25 = a, log35 = b. Khi đó, log65 tính theo a và b bằng

A. aba+b.

B. 1a+b.

C. a2 + b2.

D. a + b.

Bài 6.32 trang 25 Toán 11 Tập 2

Cho hàm số y = 2x. Khẳng định nào sau đây là sai?

A. Tập xác định của hàm số là ℝ.

B. Tập giá trị của hàm số là (0; + ∞).

C. Đồ thị của hàm số cắt trục Ox tại đúng một điểm.

D. Hàm số đồng biến trên tập xác định của nó.

Bài 6.33 trang 25 Toán 11 Tập 2

Hàm số nào sau đây đồng biến trên tập xác định của nó?

A. y = log0,5­x.

B. y = e– x.

C. y=13x.

D. y = ln x.

Bài 6.34 trang 25 Toán 11 Tập 2

Cho đồ thị ba hàm số y = logax, y = logbx và y = logcx như hình bên. Mệnh đề nào sau đây là đúng?

 

A. a > b > c.

B. b > a > c.

C. a > c > b.

D. b > c > a.

Bài 6.35 trang 26 Toán 11 Tập 2

Cho 0 < a ≠ 1. Tính giá trị của biểu thức logaa2.a3.a45a4+a2loga10530.

Bài 6.37 trang 26 Toán 11 Tập 2

Tìm tập xác định của các hàm số sau:

a) y=4x-2x+1;

b) y = ln(1 – lnx).

Bài 6.38 trang 26 Toán 11 Tập 2

Lạm phát là sự tăng mức giá chung một cách liên tục của hàng hoá và dịch vụ theo thời gian, tức là sự mất giá trị của một loại tiền tệ nào đó. Chẳng hạn, nếu lạm phát là 5% một năm thì sức mua của 1 triệu đồng sau một năm chỉ còn là 950 nghìn đồng (vì đã giảm mất 5% của 1 triệu đồng, tức là 50 000 đồng). Nói chung, nếu tỉ lệ lạm phát trung bình là r% một năm thì tổng số tiền P ban đầu, sau n năm số tiền đó chỉ còn giá trị là

A=P.1-r100n.

a) Nếu tỉ lệ lạm phát là 8% một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại bao nhiêu?

b) Nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì tỉ lệ lạm phát trung bình của hai năm đó là bao nhiêu?

c) Nếu tỉ lệ lạm phát là 5% một năm thì sau bao nhiêu năm sức mua của số tiền ban đầu chỉ còn lại một nửa?

Bài 6.39 trang 26 Toán 11 Tập 2

Giả sử quá trình nuôi cấy vi khuẩn tuân theo quy luật tăng trưởng tự do. Khi đó, nếu gọi N0 là số lượng vi khuẩn ban đầu và N(t) là số lượng vi khuẩn sau t giờ thì ta có:

Nt=N0ert, trong đó r là tỉ lệ tăng trưởng vi khuẩn mỗi giờ. Giả sử ban đầu có 500 con vi khuẩn và sau 1 giờ tăng lên 800 con. Hỏi:

a) Sau 5 giờ thì số lượng vi khuẩn là khoảng bao nhiêu con?

b) Sau bao lâu thì số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi?

Bài 6.40 trang 26 Toán 11 Tập 2

Vào năm 1938, nhà vật lí Frank Benford đã đưa ra một phương pháp để xác định xem một bộ số đã được chọn ngẫu nhiên hay đã được chọn theo cách thủ công. Nếu bộ số này không được chọn ngẫu nhiên thì công thức Benford sau sẽ được dùng ước tính xác suất P để chữ số d là chữ số đầu tiên của bộ số đó: 𝑃=log𝑑+1𝑑. (Theo F.Benford, The Law of Anomalous Numbers, Proc. Am. Philos. Soc. 78 (1938), 551 – 572).

Chẳng hạn, xác suất để chữ số đầu tiên là 9 bằng khoảng 4,6% (thay d = 9 trong công thức Benford để tính P).

a) Viết công thức tìm chữ số d nếu cho trước xác suất P.

b) Tìm chữ số có xác suất bằng 9,7% được chọn.

c) Tính xác suất để chữ số đầu tiên là 1.

 

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9