Giải bài tập Bài 4.36 trang 102 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 4.36 trang 102 Toán 11 Tập 1. Bài tập cuối chương 4. Toán 11 - Kết nối tri thức

Đề bài:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Đường thẳng SB song song với mặt phẳng

A. (CDM).

B. (ACM).

C. (ADM).

D. (ACD).

Đáp án và cách giải chi tiết:

Đáp án đúng là: B

 

Gọi O là tâm của hình bình hành ABCD, khi đó hai đường chéo AC và BD của hình bình hành ABCD cắt nhau tại trung điểm O của mỗi đường.

Xét tam giác SBD có M, O lần lượt là trung điểm của SD và BD nên MO là đường trung bình của tam giác SBD, suy ra MO // SB.

Vì O thuộc AC nên O thuộc mặt phẳng (ACM) và M thuộc mặt phẳng (ACM) nên mặt phẳng (ACM) chứa đường thẳng OM.

Khi đó ta có đường thẳng SB song song với đường thẳng OM và đường thẳng OM nằm trong mặt phẳng (ACM), do vậy đường thẳng SB song song với mặt phẳng (ACM).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 4.35 trang 102 Toán 11 Tập 1

Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là

A. chéo nhau.

B. cắt nhau.

C. song song.

D. trùng nhau.

Bài 4.37 trang 102 Toán 11 Tập 1

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (AB'D') song song với mặt phẳng

A. (ABCD).

B. (BCC'B').

C. (BDA').

D. (BDC').

Bài 4.38 trang 102 Toán 11 Tập 1

Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau. Đường thẳng a cắt các mặt phẳng (P), (Q), (R) lần lượt tại A, B, C sao cho  ABBC=23𝐴𝐵𝐵𝐶=23 và đường thẳng b cắt các mặt phẳng (P), (Q), (R) lần lượt tại A', B', C'. Tỉ số A'B'B'C' bằng

A. 23

B. 12

C. 32

D. 25

Bài 4.39 trang 102 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số 𝑆𝐾𝑆

A. 12

B. 13

C. 14

D. 23

Bài 4.40 trang 102 Toán 11 Tập 1

Cho hình hộp ABCD.A'B'C'D'. Gọi M, M' lần lượt là trung điểm của các cạnh BC, B'C'. Hình chiếu của ∆B'DM qua phép chiếu song song trên (A'B'C'D') theo phương chiếu AA' là

A. ∆B'A'M'.

B. ∆C'D'M'.

C. ∆DMM'.

D. ∆B'D'M'.

Bài 4.41 trang 103 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:

a) (SAD) và (SBC);

b) (SAB) và (SCD);

c) (SAC) và (SBD).

Bài 4.42 trang 103 Toán 11 Tập 1

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA'.

a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B'C.

b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C. Tính tỉ số KB'KC.

Bài 4.43 trang 103 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN.

a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số SKSD.

b) Chứng minh rằng MN // (SAD).

Bài 4.44 trang 103 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.

a) Chứng minh rằng GK // (ABCD).

b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

Bài 4.45 trang 103 Toán 11 Tập 1

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N lần lượt là trung điểm của cạnh AD, A'B'. Chứng minh rằng:

a) BD // B'D', (A'BD) // (CB'D') và MN // (BDD'B');

b) Đường thẳng AC' đi qua trọng tâm G của tam giác A'BD.

Bài 4.46 trang 103 Toán 11 Tập 1

Cho tứ diện ABCD. Trên cạnh AB lấy điểm M sao cho BM = 3AM. Mặt phẳng (P) đi qua M song song với hai đường thẳng AD và BC.

a) Xác định giao điểm K của mặt phẳng (P) với đường thẳng CD.

b) Tính tỉ số KCCD.

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9