Giải bài tập Bài 1.42 trang 44 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 1.42 trang 44 Toán 12 Tập 1. Bài tập cuối chương 1. SGK Toán 12 - Kết nối tri thức

Đề bài:

Bài 1.42 trang 44 Toán 12 Tập 1: Tìm các tiệm cận của mỗi đồ thị hàm số sau:

a) y=3x-2x+1

b) y=x2+2x-12x-1

Đáp án và cách giải chi tiết:

a) y=3x-2x+1

Tập xác định: D = ℝ\{−1}.

Có limx-1+y=limx-1+3x-2x+1=-; limx-1-y=limx-1-3x-2x+1=+

Do đó x = −1 là tiệm cận đứng của đồ thị hàm số.

Có limx+y=limx+3x-2x+1=limx+3+2x1+1x=3; limx-y=limx-3x-2x+1=limx-3+2x1+1x=3

Do đó y = 3 là tiệm cận ngang của đồ thị hàm số.

b) y=x2+2x-12x-1=12x+54+142x+1

Tập xác định: D=\12

limx12+y=limx12+x2+2x-12x-1=+; limx12-y=limx12-x2+2x-12x-1=-

Do đó x=12 là tiệm cận đứng của đồ thị hàm số.

Có limx+y-12x+54=limx+142x-1=0

Do đó y=12x+54 là tiệm cận xiên của đồ thị hàm số.

Có limx+y=limx+x2+2x-12x-1=+; limx-y=limx-x2+2x-12x-1=-

Do đó đồ thị hàm số không có tiệm cận ngang.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1.30 trang 42 Toán 12 Tập 1

Bài 1.30 trang 42 Toán 12 Tập 1: Cho hàm số y = f(x) có đạo hàm trên khoảng (a; b). Phát biểu nào dưới đây là đúng?

A. Nếu f'(x) ≥ 0 với mọi x thuộc (a; b) thì hàm số y = f(x) đồng biến trên (a; b).

B. Nếu f'(x) > 0 với mọi x thuộc (a; b) thì hàm số y = f(x) đồng biến trên (a; b).

C. Hàm số y = f(x) đồng biến trên (a; b) khi và chỉ khi f'(x) ≥ 0 với mọi x thuộc (a; b).

D. Hàm số y = f(x) đồng biến trên (a; b) khi và chỉ khi f'(x) > 0 với mọi x thuộc (a; b).

Bài 1.32 trang 42 Toán 12 Tập 1

Bài 1.32 trang 42 Toán 12 Tập 1: Hàm số nào dưới đây không có cực trị?

A. y = |x|.             B. y = x4.              C. y = −x3 + x.     D. y=2x-1x+1.

Bài 1.33 trang 42 Toán 12 Tập 1

Bài 1.33 trang 42 Toán 12 Tập 1: Giá trị cực tiểu của hàm số y = x2lnx là

A. 1e

B. -1e

C. -12e

D. 12e

Bài 1.34 trang 42 Toán 12 Tập 1

Bài 1.34 trang 42 Toán 12 Tập 1: Giá trị lớn nhất của hàm số y = (x – 2)2ex trên đoạn [1; 3] là

A. 0.                     B. e3.                    C. e4.                    D. e.

Bài 1.35 trang 42 Toán 12 Tập 1

Bài 1.35 trang 42 Toán 12 Tập 1: Cho hàm số y = f(x) thỏa mãn: limx2+fx=1; limx2-=1; limx-fx=2; limx+fx=2. Khẳng định nào sau đây là đúng?

A. Đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

B. Đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

C. Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

D. Đường thẳng x = 2 là tiệm cận ngang của đồ thị hàm số.

Bài 1.36 trang 42 Toán 12 Tập 1

Bài 1.36 trang 42 Toán 12 Tập 1: Tiệm cận xiên của đồ thị hàm số y=x2+2x-2x+2 là:

A. y = −2.             B. y = 1.               C. y = x + 2.         D. y = x.

Bài 1.37 trang 43 Toán 12 Tập 1

Bài 1.37 trang 43 Toán 12 Tập 1: Cho hàm số y = f(x) xác định trên ℝ\{1; 3}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Khẳng định nào sau đây là sai?

A. Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số đã cho.

B. Đường thẳng y = −1 là tiệm cận ngang của đồ thị hàm số đã cho.

C. Đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số đã cho.

D. Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số đã cho.

Bài 1.38 trang 43 Toán 12 Tập 1

Bài 1.38 trang 43 Toán 12 Tập 1: Đồ thị trong Hình 1.37 là đồ thị của hàm số:

A. y=x+2x+1

B. y=2x+1x+1

C. y=x-1x+1

D. y=x+31-x

Bài 1.39 trang 43 Toán 12 Tập 1

Bài 1.39 trang 43 Toán 12 Tập 1: Đồ thị trong Hình 1.38 là đồ thị của hàm số:

A. y=x-1x+1

B. y=2x+1x+1

C. y=x2-x+1x+1

D. y=x2+x+1x+1

Bài 1.44 trang 44 Toán 12 Tập 1

Bài 1.44 trang 44 Toán 12 Tập 1: Xét một thấu kính hội tụ có tiêu cự f (H.1.39). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: 1p+1q=1f

a) Viết công thức tính q = g(p) như một hàm số của biến p ∈ (f; +∞).

b) Tính các giới hạn limp+gp; limpf+gp và giải thích ý nghĩa các kết quả này.

c) Lập bảng biến thiên của hàm số q = g(p) trên khoảng (f; +∞).

Bài 1.45 trang 44 Toán 12 Tập 1

Bài 1.45 trang 44 Toán 12 Tập 1: Dân số của một quốc gia sau t (năm) kể từ năm 2023 được ước tính bởi công thức: N(t) = 100e0,012t (N(t) được tính bằng triệu người, 0 ≤ t ≤ 50).

a) Ước tính dân số của quốc gia này vào các năm 2030 và 2035 (kết quả tính bằng triệu người, làm tròn kết quả đến chữ số thập phân thứ ba).

b) Xem N(t) là hàm số của biến số t xác định trên đoạn [0; 50]. Xét chiều biến thiên của hàm số N(t) trên đoạn [0; 50].

c) Đạo hàm của hàm số N(t) biểu thị tốc độ tăng dân số của quốc gia đó (tính bằng triệu người/năm). Vào năm nào tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/năm.

Bài 1.46 trang 44 Toán 12 Tập 1

Bài 1.46 trang 44 Toán 12 Tập 1: Một đường dây điện được nối từ một nhà máy điện ở A đến một hòn đảo ở C như Hình 1.40. Khoảng cách từ C đến B là 4 km. Bờ biển chạy thẳng từ A đến B với khoảng cách là 10 km. Tổng chi phí lắp đặt cho 1 km dây điện trên biển là 50 triệu đồng, còn trên đất liền là 30 triệu đồng. Xác định vị trí điểm M trên đoạn AB (điểm nối dây từ đất liền ra đảo) để tổng chi phí lắp đặt là nhỏ nhất.

Bài 1.43 trang 44 Toán 12 Tập 1

Bài 1.43 trang 44 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) y = −x3 + 6x2 – 9x + 12;

b) y=2x-1x+1

c) y=x2-2xx-1

Bài 1.41 trang 44 Toán 12 Tập 1

Bài 1.41 trang 44 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=2x+13x-2 trên nửa khoảng [2; +∞);

b) y=2-x2

Bài 1.40 trang 43 Toán 12 Tập 1

Bài 1.40 trang 43 Toán 12 Tập 1: Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:

a) y = x3 – 3x2 + 3x – 1;

b) y = x4 – 2x2 – 1;

c) y=2x-13x+1

d) y=x2+2x+2x+1

Bài 1.31 trang 42 Toán 12 Tập 1

Bài 1.31 trang 42 Toán 12 Tập 1: Hàm số nào sau đây nghịch biến trên ℝ.

A. y = −x3 + 3x2 – 9x. 

B. y = −x3 + x + 1.

C. y=x-1x-2

D. y = 2x2 + 3x + 2.

Giải bài tập SGK Toán 12 - Kết nối tri thức

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.

Bài tập cuối chương 1

Chương 2. Vectơ và hệ trục tọa độ trong không gian

Bài 6. Vectơ trong không gian.

Bài 7. Hệ trục toạ độ trong không gian.

Bài 8. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2.

Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Bài 9. Khoảng biến thiên và khoảng tứ phân vị.

Bài 10. Phương sai và độ lệch chuẩn.

Bài tập cuối chương 3.

Hoạt động thực hành và trải nghiệm

Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra.

Vẽ vectơ tổng của ba vectơ trong không gian bằng phần mềm GeoGebra.

Độ dài gang tay (gang tay của bạn dài bao nhiêu?)

Chương 4. Nguyên hàm và Tích phân.

Bài 11. Nguyên hàm.

Bài 12. Tích phân.

Bài 13. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4.

Chương 5. Phương pháp tọa độ trong không gian

Bài 14. Phương trình mặt phẳng.

Bài 15. Phương trình đường thẳng trong không gian.

Bài 16. Công thức tính góc trong không gian.

Bài 17. Phương trình mặt cầu.

Bài tập cuối chương 5.

Chương 6. Xác suất có điều kiện

Bài 18. Xác suất có điều kiện.

Bài 19. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm

Tính nguyên hàm và tích phân với phần mềm GeoGebra.

Tính gần đúng tích phân bằng phương pháp hình thang.

Vẽ đồ hoạ 3D với phần mềm GeoGebra.