Giải bài tập Bài 1.28 trang 41 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.28 trang 41 Toán 12 Tập 1. Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.. SGK Toán 12 - Kết nối tri thức
Đề bài:
Bài 1.28 trang 41 Toán 12 Tập 1: Người quản lí của một khu chung cư có 100 căn hộ cho thuê nhận thấy rằng tất cả các căn hộ sẽ có người thuê nếu giá thuê một căn hộ là 8 triệu đồng một tháng. Một cuộc khảo sát thị trường cho thấy rằng, trung bình cứ mỗi lần tăng giá thuê căn hộ thêm 100 nghìn đồng thì sẽ có thêm một căn hộ bị bỏ trống. Người quản lí nên đặt giá thuê mỗi căn hộ là bao nhiêu để doanh thu là lớn nhất?
Đáp án và cách giải chi tiết:
Gọi x là số lần tăng giá (0 < x < 100).
Mỗi lần tăng giá thì số căn hộ cho thuê là 100 – x (căn).
Số tiền thuê căn hộ sau mỗi lần tăng là: 8 000 000 + 100 000x.
Khi đó tổng số tiền cho thuê căn hộ 1 tháng là:
y = (8 000 000 + 100 000x)(100 – x)
= 800 000 000 – 8 000 000x + 10 000 000x – 100 000x2
= 800 000 000 + 2 000 000x – 100 000x2
Bài toán trở thành tìm x để y lớn nhất
Ta có y' = −200 000x + 2 000 000; y' = 0 ⇔ x = 10.
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy doanh thu lớn nhất khi người quản lí đặt giá thuê căn hộ là 8 000 000 + 100 000.10 = 9 000 000 (đồng).
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1.26 trang 40 Toán 12 Tập 1
Bài 1.26 trang 40 Toán 12 Tập 1: Giả sử một hạt chuyển động trên một trục thẳng đứng chiều dương hướng lên trên sao cho tọa độ của hạt (đơn vị: mét) tại thời điểm t (giây) là y = t3 – 12t + 3, t ≥ 0.
a) Tìm các hàm vận tốc và gia tốc.
b) Khi nào thì hạt chuyển động lên trên và khi nào thì hạt chuyển động xuống dưới.
c) Tìm quãng đường hạt đi được trong khoảng thời gian 0 ≤ t ≤ 3.
d) Khi nào hạt tăng tốc? khi nào hạt giảm tốc?
Bài 1.27 trang 41 Toán 12 Tập 1
Bài 1.27 trang 41 Toán 12 Tập 1: Giả sử chi phí (tính bằng trăm nghìn đồng) để sản xuất x đơn vị hàng hóa nào đó là: C(x) = 23000 + 50x – 0,5x2 + 0,00175x3.
a) Tìm hàm chi phí biên.
b) Tìm C'(100) và giải thích ý nghĩa của nó.
c) So sánh C'(100) với chi phí sản xuất đơn vị hàng hóa thứ 101.
Bài 1.29 trang 41 Toán 12 Tập 1
Bài 1.29 trang 41 Toán 12 Tập 1: Giả sử hàm cầu đối với một loại hàng hóa được cho bởi công thức , trong đó p là giá bán (nghìn đồng) của mỗi đơn vị sản phẩm và x là số lượng đơn vị sản phẩm đã bán.
a) Tìm công thức tính x như là hàm số của p. Tìm tập xác định của hàm số này. Tính số đơn vị sản phẩm đã bán khi giá bán của mỗi đơn vị sản phẩm là 240 nghìn đồng.
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số x = x(p). Từ đồ thị đã vẽ, hãy cho biết:
- Số lượng đơn vị sản phẩm bán được sẽ thay đổi thế nào khi giá bán p tăng;
- Ý nghĩa thực tiễn của giới hạn
Mở đầu trang 33 Toán 12 Tập 1
Một đội bóng đá thi đấu trong một sân vận động có sức chứa 55 000 khán giả. Với giá mỗi vé là 100 nghìn đồng, số khán giả trung bình là 27 000 người. Qua thăm dò dư luận, người ta thấy rằng mỗi khi giá vé giảm thêm 10 nghìn đồng, sẽ có thêm khoảng 3000 khán giả. Hỏi ban tổ chức nên đặt giá vé là bao nhiêu để doanh thu từ tiền bán vé là lớn nhất?
Luyện tập 1 trang 36 Toán 12 Tập 1
Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu (tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P (tính bằng mmHg) được cho bởi hàm số , , trong đó thời gian t được tính bằng giây. Tính tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim.
Luyện tập 2 trang 38 Toán 12 Tập 1
Anh An chèo thuyền từ điểm A trên bờ một con sông thẳng rộng 3 km và muốn đến điểm B ở bờ đối diện cách 8 km về phía hạ lưu càng nhanh càng tốt (H.1.35). Anh An có thể chèo thuyền trực tiếp qua sông đến điểm C rồi chạy bộ đến B, hoặc anh có thể chèo thuyền thẳng đến B, hoặc anh cũng có thể chèo thuyền đến một điểm D nào đó giữa C và B rồi chạy bộ đến B. Nếu vận tốc chèo thuyền là 6 km/h và vận tốc chạy bộ là 8 km/h thì anh An phải chèo thuyền sang bờ ở điểm nào để đến được B càng sớm càng tốt? (Giả sử rằng vận tốc của nước là không đáng kể so với vận tốc chèo thuyền của anh An).
Vận dụng trang 40 Toán 12 Tập 1
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần.
a) Tìm hàm cầu.
b) Công ty nên giảm giá bao nhiêu cho người mua để doanh thu là lớn nhất?
c) Nếu hàm chi phí hằng tuần là (triệu đồng), trong đó x là số ti vi bán ra trong tuần, nhà sản xuất nên đặt giá bán như thế nào để lợi nhuận là lớn nhất?