Giải bài tập Bài 6.6 trang 43 SBT Toán 12 Tập 2 | SBT Toán 12 - Kết nối tri thức (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 6.6 trang 43 SBT Toán 12 Tập 2. Bài 18. Xác suất có điều kiện.. SBT Toán 12 - Kết nối tri thức (SBT)

Đề bài:

Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau:

A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”;

B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”;

C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”.

Chứng minh rằng:

a) Hai biến cố A và B độc lập;

b) Hai biến cố B và C độc lập.

c) Hai biến cố A và C độc lập.

Đáp án và cách giải chi tiết:

a) Ta có:

Các phần tử của biến cố A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất” là:

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)};

Các phần tử của biến cố B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”;

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)}.

Có A ∩ B = {(1; 2)}.

Do đó, P(A) = ; P(B) =  ; P(AB) = .

Nhận thấy  =  hay P(AB) = P(A).P(B).

Ta có: P(A | B) =  = P(A);

           P(B | A) =  = P(B).

Vậy P(A | B) = P(A), P(B | A) = P(B).

Vậy hai biến cố A và B độc lập.

b) Các phần tử của biến cố C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7” là:

C = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)};

Có B ∩ C = {(5; 2)}.

Ta có: P(C) =  ; P(BC) =  .

Suy ra P(BC) = P(C).P(B).

Nhận thấy: P(B | C) =  = P(B);

                   P(C | A) =   = P(C).

Vậy P(B | C) = P(B), P(C | A) = P(C).

Vậy hai biến cố C và B độc lập.

c) Ta có: A ∩ C = {(1; 6)} nên P(AC) = .

Ta có: P(AC) = P(C).P(A).

Tương tự ý a, b ta suy ra A và C là hai biến cố độc lập.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 6.1 trang 42 SBT Toán 12 Tập 2

Cho P(A) = ; P(B) = ; P(A ∪ B) = . Tính P(A | B) và P(B | A)

Bài 6.2 trang 42 SBT Toán 12 Tập 2

Một túi đựng 5 viên bi đỏ và 3 viên xanh. Sơn lấy ngẫu nhiên một viên bi đưa cho Tùng rồi Tùng lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi lấy ra có ít nhất một viên bi đỏ.

Bài 6.3 trang 42 SBT Toán 12 Tập 2

Một hộp chứa 20 tấm thẻ đánh số {1; 2;…; 20}. Nam rút ngẫu nhiên một tấm thẻ đưa cho Hà rồi Hà rút ngẫu nhiên tiếp một tấm thẻ. Tính xác suất để cả hai thẻ Hà nhận được đều ghi số nguyên tố”

Bài 6.4 trang 43 SBT Toán 12 Tập 2

Một hộp chứa 17 viên bi đỏ, 13 viên bi xanh. An lấy ngẫu nhiên một viên bi đưa cho Bình rồi Bình lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi Bình nhận được:

a) Đều là bi đỏ;

b) Là hai viên bi khác nhau.

 

Bài 6.5 trang 43 SBT Toán 12 Tập 2

Cho hai biến cố A và B với P(A) > 0, P(B) > 0. Chứng minh rằng nếu P(AB) = P(A).P(B) thì A và B độc lập.

Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.

Bài tập cuối chương 1

Chương 2. Vectơ và hệ trục tọa độ trong không gian

Bài 6. Vectơ trong không gian

Bài 7. Hệ trục toạ độ trong không gian

Bài 8. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2

Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Bài 9. Khoảng biến thiên và khoảng tứ phân vị.

Bài 10. Phương sai và độ lệch chuẩn.

Bài tập cuối chương 3

Chương 4. Nguyên hàm và Tích phân.

Bài 11. Nguyên hàm.

Bài 12. Tích phân.

Bài 13. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4

Chương 5. Phương pháp tọa độ trong không gian

Bài 14. Phương trình mặt phẳng.

Bài 15. Phương trình đường thẳng trong không gian.

Bài 16. Công thức tính góc trong không gian.

Bài 17. Phương trình mặt cầu.

Bài tập cuối chương 5

Chương 6. Xác suất có điều kiện

Bài 18. Xác suất có điều kiện.

Bài 19. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Bài tập ôn tập cuối năm

Đề minh họa kiểm tra cuối học kì II