Giải bài tập Bài 3.4 trang 62 SBT Toán 12 Tập 1 | SBT Toán 12 - Kết nối tri thức (SBT)
Hướng dẫn giải chi tiết từng bước bài tập Bài 3.4 trang 62 SBT Toán 12 Tập 1. Bài 9. Khoảng biến thiên và khoảng tứ phân vị.. SBT Toán 12 - Kết nối tri thức (SBT)
Đề bài:
Bảng sau đây cho biết thành tích nhảy cao của các học sinh nam trong hai lớp 12A và 12B:
Hỏi nên dùng khoảng biến thiên hay khoảng tứ phân vị để so sánh mức độ phân tán của hai mẫu số liệu ghép nhóm trên? Tại sao?
Đáp án và cách giải chi tiết:
Từ bảng số liệu, ta thấy thành tích nhảy cao của các bạn lớp 12A có 1 giá trị bất thường thuộc [1,1; 1,2) và thành tích nhảy cao của các bạn lớp 12B có 1 giá trị bất thường thuộc nhóm [1,7; 1,8). Vì vậy ta nên dùng khoảng tứ phân vị để có thể loại bỏ ảnh hưởng của các giá trị bất thường này.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 3.1 trang 62 SBT Toán 12 Tập 1
Cho mẫu số liệu ghép nhóm sau về chiều cao (tính từ mặt bầu cây) của 20 cây cam giống nhau:
a) Tìm khoảng biến thiên Rn cho mẫu số liệu ghép nhóm trên.
b) Biết rằng trong 20 cây cam giống trên, cây cao nhất là 72 cm và cây thấp nhất là 46 cm. Tìm khoảng biến thiên Rg cho mẫu số liệu gốc. Để đo độ phân tán của mẫu số liệu về chiều cao 20 cây cam giống ta dùng Rn hay Rg sẽ chính xác hơn?
Bài 3.2 trang 62 SBT Toán 12 Tập 1
Một trang trại thử nghiệm nuôi một giống cá mới. Sau 6 tháng người ta thu hoạch cho kết quả như sau:
a) Tìm khoảng tứ phân vị ∆Q của mẫu số liệu ghép nhóm.
b) Khoảng tứ phân vị của mẫu số liệu gốc có phụ thuộc vào cân nặng của 10 con cá có khối lượng nhỏ nhất không? Vì sao?
Bài 3.3 trang 62 SBT Toán 12 Tập 1
Kết quả thi thử của các thí sinh tại một trung tâm tiếng Anh được cho như sau:
a) Nêu các nhóm số liệu và tần số tương ứng. Giải thích thông tin của một nhóm số liệu.
b) Tìm khoảng tứ phân vị cho mẫu số liệu ghép nhóm.