Tổng hợp bài tập có chứa công thức Công thức đạo hàm
Tổng hợp các bài tập cơ bản, nâng cao trong sách giáo khoa có ứng dụng công thức Công thức đạo hàm
Bài 1.10 trang 19 Toán 12 Tập 1
Bài 1.10 trang 19 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:
a) y = −x2 + 4x + 3;
b) y = x3 – 2x2 + 1 trên [0; +∞);
c) trên (1; +∞);
d) .
Bài 1.7 trang 14 Toán 12 Tập 1
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau:
a) y = 2x3 – 9x2 + 12x – 5;
b) y = x4 – 4x2 + 2;
c) ;
d) .
Bài 1.4 trang 13 Toán 12 Tập 1
Bài 1.4 trang 13 Toán 12 Tập 1: Xét chiều biến thiên của các hàm số sau:
a) ;
b) .
Bài 1.3 trang 13 Toán 12 Tập 1
Bài 1.3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau:
a)
b)
Bài 1.2 trang 13 Toán 12 Tập 1
Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau:
a) ;
b) y = −x3 + 2x2 – 5x + 3.
Bài 1.1 trang 13 Toán 12 Tập 1
Bài 1.1 trang 13 Toán 12 Tập 1: Tìm các khoảng đồng biến, khoảng nghịch biến của các hàm số có đồ thị như sau:
a) Đồ thị hàm số (H.1.11);
b) Đồ thị hàm số (H.1.12).
Bài 9 trang 47 Toán 12 Tập 1
Bài 9 trang 47 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
a) ;
b) ;
c) ;
d) ;
e) ;
g) .
Bài 6 trang 43 Toán 12 Tập 1
Bài 6 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) ;
b) ;
c) ;
d) ;
e) ;
f)
Bài 8 trang 47 Toán 12 Tập 1
Bài 8 trang 47 Toán 12 Tập 1: Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau:
a) trên đoạn ;
b) trên đoạn ;
c) trên đoạn ;
d) trên đoạn .
Bài 5 trang 43 Toán 12 Tập 1
Bài 5 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) ;
b) ;
c) ;
d) ;
e) ;
g) .