Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy | Toán 11 - Cánh diều
Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy
Dưới đây là công thức Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy
A. Phương pháp giải
- Để chứng minh 3 điểm A; B; C thẳng hàng ta chứng minh 3 điểm đó cùng thuộc 1 đường thẳng hoặc chứng minh 3 điểm đó là điểm chung của hai mặt phẳng (α) và (β) - Khi đó chúng cùng thuộc giao tuyến của 2 mặt phẳng (α) và (β).
- Để chứng minh ba đường thẳng đồng quy ta có thể làm theo những cách sau:
+ Cách 1: chứng minh giao điểm của hai đường này là điểm chung của hai mặt phẳng mà giao tuyến là đường thẳng thứ ba
+ Cách 2: Dựa vào định lí: Ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến khi đó; ba giao tuyến đó đồng quy hoặc đôi một song song
B. Ví dụ minh họa
Ví dụ 1: Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AB và CD. Mặt phẳng (P) qua MN và cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
A. I; A; C B. I; B; D C. I; A; B D. I; C; D
Lời giải
Ta có: (1)
Lại có
Từ (1) và (2) suy ra: I ∈ BD hay 3 điểm I; B; D thẳng hàng
Chọn B.
Ví dụ 2: Cho tứ diện SABC. Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB và LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC và SC lần lượt tại K; I; J. Ba điểm nào sau đây thẳng hàng?
A. K; I và J B. M; I và J C. N ; I và J D. M; K và J
Lời giải
Ta có
- M ∈ SB suy ra M isin; (LMN) ∩ (SBC) (1)
- I ∈ BC ⊂ (SBC) và I ∈ NK ⊂ (LMN)
⇒ I ∈ (LMN) ∩ (SBC) (2)
- J ∈ SC ⊂ (SBC) và J ∈ LN ⊂ (LMN)
⇒ J ∈ (LMN) ∩ (SBC) (3)
Vậy M ; I; J thẳng hàng vì cùng thuộc giao tuyến của mp (LMN) và (SBC)
Chọn B
Ví dụ 3: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD; M là trung điểm CD; I thuộc đoạn AG; BI cắt mp (ACD) tại J. Chọn mệnh đề sai
A. Giao tuyến của (ACD) và (ABG) là AM
B. 3 điểm A; J; M thẳng hàng.
C. J là trung điểm của AM.
D. Giao tuyến của mp(ACD) và (BDJ) là DJ.
Lời giải
Ta xét các phương án:
+ Ta có: A là điểm chung thứ nhất giữa hai mp (ACD) và mp (GAB) (1)
Do M là giao điểm của BG và CD nên: (2)
Từ (1) và (2) suy ra: giao tuyến của (ABG) và (ACD) là AM ⇒ A đúng.
+ Ta có ⇒ D đúng
+ Điểm I di động trên AG nên J có thể không phải là trung điểm của AM.⇒ C sai
Chọn C.
Ví dụ 4: Cho tứ diện ABCD. Gọi E; F; G là các điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?
A. CD; EF; EG B. CD; IG; HF C. AB; IG; HF D, AC; IG; BD
Lời giải
Gọi O là giao điểm của HF và IG . Ta có
- O ∈ HF mà HF ⊂ (ACD) suy ra O ∈ (ACD)
- O ∈ IG mà IG ⊂ (BCD) suy ra O ∈ (BCD)
Do đó O ∈ (ACD) ∩ (BCD) (1)
Mà (ACD) ∩ (BCD) = CD (2)
Từ (1) và (2), suy ra O ∈ CD.
Vậy ba đường thẳng CD; IG; HF đồng quy tại O.
Chọn B
Ví dụ 5: Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M . Gọi N là giao điểm của SD và mp (AMB). Mệnh đề nào sau đây đúng?
A. Ba đường thẳng AB; CD; MN đôi một song song
B. Ba đường thẳng AB; CD; MN đôi một cắt nhau
C. Ba đường thẳng AB; CD; MN đồng quy
D. Ba đường thẳng AB; CD; MN cùng thuộc một mặt phẳng
Lời giải
- Trong mp (ABCD) gọi I là giao điểm của AD và BC
Trong mp (SBC), gọi K là giao điểm của BM và SI
Trong mp (SAD); gọi N là giao điểm của AK và SD
Khi đó N là giao điểm của đường thẳng SD với mp(AMB)
- Gọi O là giao điểm của AB và CD. Ta có:
+ O ∈ AB mà AB ⊂ (AMB) suy ra O ∈ (AMB)
+ O ∈ CD mà CD ⊂ (SCD) suy ra O ∈ (SCD)
⇒ O ∈ (AMB) ∩ (SCD) (1)
Mà MN = (AMB) ∩ (SCD) (2)
Từ (1) và (2) , suy ra O ∈ MN.
Vậy ba đường thẳng AB; CD và MN đồng quy.
Chọn C
Ví dụ 6: Cho tứ diện ABCD có G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?
A. AM = (ACD) ∩ (ABG)
B. A; J; M thẳng hàng
C. J là trung điểm AM
D. DJ = (ACD) ∩ (BDJ)
Lời giải
Chọn C
nên . Vậy A đúng.
+ Ba điểm A; J và M cùng thuộc hai mặt phẳng phân biệt (ACD) và (ABG) nên A; J; M thẳng hàng, vậy B đúng
+ Vì I là điểm tùy ý trên AG nên J không phải lúc nào cũng là trung điểm của AM.