Giải bài tập Bài 4 trang 49 Chuyên đề Toán 11 | Chuyên đề học tập Chân Trời Sáng Tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 4 trang 49 Chuyên đề Toán 11. Bài 1. Đồ thị.. Chuyên đề học tập Chân Trời Sáng Tạo

Đề bài:

Bài 4 trang 49 Chuyên đề Toán 11: Biết rằng G là đồ thị có 6 đỉnh, 8 cạnh và các đỉnh của nó có bậc 2 hoặc 4. Đồ thị có bao nhiêu đỉnh bậc 4? Hãy vẽ một đồ thị như vậy.

Đáp án và cách giải chi tiết:

Theo Định lí, ta có tổng tất cả các bậc của các đỉnh bằng hai lần số cạnh của đồ thị.

Suy ra tổng tất cả các bậc của các đỉnh là: 2.8 = 16.

Theo đề, ta có đồ thị G có 6 đỉnh và các đỉnh của đồ thị G có bậc 2 hoặc 4.

Mà 2 + 2 + 2 + 2 + 4 + 4 = 16.

Vậy đồ thị G có 2 đỉnh bậc 4 và 4 đỉnh bậc 2.

Ta vẽ đồ thị như sau:

– Gọi 6 đỉnh của đồ thị là A, B, C, D, E, F có bậc của mỗi đỉnh lần lượt là 4; 4; 2; 2; 2; 2.

– Do có hai đỉnh A, B có số bậc cao nhất là 4 nên ta tùy ý chọn một đỉnh là đỉnh A để bắt đầu vẽ. Xuất phát từ đỉnh A, ta lần lượt nối tới các đỉnh B, C, D, E, mỗi đỉnh một cạnh.

– Tiếp theo, ta vẽ từ đỉnh có số bậc cao nhất còn lại là đỉnh B. Do từ đỉnh B đã có sẵn một cạnh đã vẽ ở trên nên xuất phát từ đỉnh B, ta lần lượt vẽ thêm đến các đỉnh C, D, F, mỗi đỉnh một cạnh.

– Cuối cùng, ta thấy các đỉnh C, D đều có số bậc là 2. Mà hai đỉnh này ta đã vẽ xong hai cạnh cho mỗi đỉnh nên kế tiếp ta sẽ xét đến hai điểm còn lại là E, F.

Ta thấy với các đỉnh E, F, mỗi đỉnh đều đã có sẵn một cạnh đã vẽ trước đó nên ta nối một cạnh giữa hai đỉnh E và F.

Một đồ thị thỏa mãn yêu cầu bài toán là:

Chú ý: Ngoài đồ thị đã vẽ ở trên, ta có thể vẽ thêm các đồ thị khác cũng thỏa mãn yêu cầu đề bài.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khởi động trang 44 Chuyên đề Toán 11

Khởi động trang 44 Chuyên đề Toán 11: Bảng 1 cho biết các đường bay (hai chiều) giữa sáu thành phố A, B, C, D, E và F (dấu Khởi động trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo biểu thị có đường bay, dấu Khởi động trang 44 Chuyên đề học tập Toán 11 Chân trời sáng tạo biểu thị không có đường bay) của hãng hàng không X. Nếu dùng điểm để biểu thị thành phố, đoạn đường cong hoặc đường thẳng để biểu thị đường bay giữa các thành phố thì ta được sơ đồ như Hình 1.

Có người thắc mắc: “Từ thành phố A, có thể thăm năm thành phố B, C, D, E và F bằng các chuyến bay của hãng X sao cho mỗi thành phố chỉ qua đúng một lần, rồi quay trở về A không?”.

Để giải đáp thắc mắc trên, nên dùng Bảng 1 hay sơ đồ ở Hình 1? Tại sao?

Khám phá 1 trang 44 Chuyên đề Toán 11

Khám phá 1 trang 44 Chuyên đề Toán 11:

Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây:

a) Từ thành phố A, hãng X có bao nhiêu đường bay đến năm thành phố còn lại?

b) Giữa sáu thành phố trên, có tất cả bao nhiêu đường bay của hãng X?

c) Có thể giải đáp thắc mắc ở Hoạt động khởi động không?

Khám phá 2 trang 46 Chuyên đề Toán 11

Khám phá 2 trang 46 Chuyên đề Toán 11: Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng). Biết rằng mỗi con đường ra, vào làng đều phải đi qua một cổng chào; hai con đường khác nhau thì ra, vào làng qua hai cổng chào khác nhau. Ngoài ra, các ngôi làng không còn cổng chào nào khác.

a) Ngôi làng nào có ít cổng chào nhất? Ngôi làng nào có nhiều cổng chào nhất?

b) Năm ngôi làng có tất cả bao nhiêu cổng chào?

Thực hành 1 trang 46 Chuyên đề Toán 11

Thực hành 1 trang 46 Chuyên đề Toán 11: Cho đồ thị G như Hình 5.

a) Chỉ ra các đỉnh, các cạnh, số đỉnh, số cạnh của G.

b) Chỉ ra các đỉnh kề đỉnh D, các đỉnh kề đỉnh B.

c) Đồ thị G có đỉnh cô lập không?

Thực hành 2 trang 48 Chuyên đề Toán 11

Thực hành 2 trang 48 Chuyên đề Toán 11Cho đồ thị như Hình 11.

a) Hãy chỉ ra bậc của tất cả các đỉnh và tìm tổng của chúng.

b) Tìm tất cả các đỉnh kề với đỉnh B. Số đỉnh này có bằng bậc của đỉnh B không?

Vận dụng 1 trang 46 Chuyên đề Toán 11

Vận dụng 1 trang 46 Chuyên đề Toán 11: Một mạng cục bộ có bảy máy tính 1; 2; 3; 4; 5; 6 và 7. Bảng 2 cho biết giữa mỗi cặp máy tính có kết nối trực tiếp với nhau hay không (dấu Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo là có kết nối, dấu Vận dụng 1 trang 46 Chuyên đề học tập Toán 11 Chân trời sáng tạo là không kết nối). Hãy vẽ đồ thị biểu diễn sự kết nối giữa các máy tính của mạng này.

Vận dụng 2 trang 48 Chuyên đề Toán 11

Vận dụng 2 trang 48 Chuyên đề Toán 11: Có hay không một đồ thị có ba đỉnh, trong đó hai đỉnh có bậc bằng 2 và một đỉnh có bậc bằng 3?

Bài 1 trang 48 Chuyên đề Toán 11

Bài 1 trang 48 Chuyên đề Toán 11: Hãy chỉ ra các đỉnh, các cạnh, số đỉnh, số cạnh của mỗi đồ thị như Hình 12.

Bài 2 trang 48 Chuyên đề Toán 11

Bài 2 trang 48 Chuyên đề Toán 11: Cho đồ thị như Hình 13.

a) Chỉ ra bậc của các đỉnh của đồ thị.

b) Chỉ ra các đỉnh bậc lẻ của đồ thị.

c) Tính tổng tất cả các bậc của các đỉnh của đồ thị.

Bài 3 trang 49 Chuyên đề Toán 11

Bài 3 trang 49 Chuyên đề Toán 11: Một đồ thị có bốn đỉnh có bậc lần lượt là 2; 3; 4; 3. Tính số cạnh của đồ thị và vẽ đồ thị này.

Bài 5 trang 49 Chuyên đề Toán 11

Bài 5 trang 49 Chuyên đề Toán 11: Có năm học sinh An, Bình, Mai, Quang, Xuân. Biết rằng An quen Bình, Bình quen Quang, An quen Mai, Mai quen Xuân, Xuân quen Quang. Các cặp không được liệt kê ở trên thì không quen nhau. Hãy vẽ đồ thị để thể hiện mối quan hệ quen nhau giữa các học sinh trên.

Bài 6 trang 49 Chuyên đề Toán 11

Bài 6 trang 49 Chuyên đề Toán 11: Cho tập hợp số V = {2; 3; 4; 5; 6; 7; 11; 12}. Hãy vẽ đồ thị có các đỉnh biểu diễn các phần tử của V, hai đỉnh kề nhau nếu hai số mà chúng biểu diễn nguyên tố cùng nhau (tức có ước chung lớn nhất bằng 1).