Giải bài tập Bài 2.17 trang 49 Chuyên đề Toán 11 | Chuyên đề học tập Kết Nối Tri Thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 2.17 trang 49 Chuyên đề Toán 11. Bài 10. Bài toán tìm đường đi tối ưu trong một vài trường hợp đơn giản. Chuyên đề học tập Kết Nối Tri Thức
Đề bài:
Bài 2.17 trang 49 Chuyên đề Toán 11: Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.35.
Đáp án và cách giải chi tiết:
Vì đồ thị Hình 2.35 là liên thông và các đỉnh đều có bậc chẵn (ở đây chỉ có đỉnh A và đỉnh F có bậc là 2, các đỉnh còn lại đều có bậc 4) nên đồ thị này có chu trình Euler.
Một chu trình Euler xuất phát từ đỉnh A là ABCDBEDFECA và tổng độ dài của nó là
3 + 5 + 8 + 6 + 4 + 2 + 3 + 9 + 7 + 4 = 51.
Vậy một chu trình cần tìm là ABCDBEDFECA và có độ dài là 51.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
HĐ trang 46 Chuyên đề Toán 11
HĐ trang 46 Chuyên đề Toán 11: Cho sơ đồ như trên Hình 2.28, ở đó A, B, C, D, E, F là các địa điểm nối với nhau bởi các con đường với độ dài của mỗi con đường được cho như trên hình.
a) Hãy chỉ ra 2 đường đi từ A đến F và so sánh độ dài của hai đường đi đó.
b) Với mỗi đỉnh V của sơ đồ trên Hình 2.28, ta gắn số I(V) là khoảng cách ngắn nhất để đi từ A đến V và gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, ta có ngay I(A) = 0. Dựa vào Hình 2.28, hãy tìm các nhãn vĩnh viễn I(B), I(C) của hai đỉnh kề với A là B, C.
Luyện tập trang 49 Chuyên đề Toán 11
Luyện tập trang 49 Chuyên đề Toán 11: Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.32.
Bài 2.15 trang 49 Chuyên đề Toán 11
Bài 2.15 trang 49 Chuyên đề Toán 11: Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.
Bài 2.16 trang 49 Chuyên đề Toán 11
Bài 2.16 trang 49 Chuyên đề Toán 11: Tìm đường đi ngắn nhất từ đỉnh S đến mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.
Bài 2.18 trang 49 Chuyên đề Toán 11
Bài 2.18 trang 49 Chuyên đề Toán 11: Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.